Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Med Phys ; 51(3): 1812-1821, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37602841

RESUMO

BACKGROUND: Artificial intelligence/computer-aided diagnosis (AI/CADx) and its use of radiomics have shown potential in diagnosis and prognosis of breast cancer. Performance metrics such as the area under the receiver operating characteristic (ROC) curve (AUC) are frequently used as figures of merit for the evaluation of CADx. Methods for evaluating lesion-based measures of performance may enhance the assessment of AI/CADx pipelines, particularly in the situation of comparing performances by classifier. PURPOSE: The purpose of this study was to investigate the use case of two standard classifiers to (1) compare overall classification performance of the classifiers in the task of distinguishing between benign and malignant breast lesions using radiomic features extracted from dynamic contrast-enhanced magnetic resonance (DCE-MR) images, (2) define a new repeatability metric (termed sureness), and (3) use sureness to examine if one classifier provides an advantage in AI diagnostic performance by lesion when using radiomic features. METHODS: Images of 1052 breast lesions (201 benign, 851 cancers) had been retrospectively collected under HIPAA/IRB compliance. The lesions had been segmented automatically using a fuzzy c-means method and thirty-two radiomic features had been extracted. Classification was investigated for the task of malignant lesions (81% of the dataset) versus benign lesions (19%). Two classifiers (linear discriminant analysis, LDA and support vector machines, SVM) were trained and tested within 0.632 bootstrap analyses (2000 iterations). Whole-set classification performance was evaluated at two levels: (1) the 0.632+ bias-corrected area under the ROC curve (AUC) and (2) performance metric curves which give variability in operating sensitivity and specificity at a target operating point (95% target sensitivity). Sureness was defined as 1-95% confidence interval of the classifier output for each lesion for each classifier. Lesion-based repeatability was evaluated at two levels: (1) repeatability profiles, which represent the distribution of sureness across the decision threshold and (2) sureness of each lesion. The latter was used to identify lesions with better sureness with one classifier over another while maintaining lesion-based performance across the bootstrap iterations. RESULTS: In classification performance assessment, the median and 95% CI of difference in AUC between the two classifiers did not show evidence of difference (ΔAUC = -0.003 [-0.031, 0.018]). Both classifiers achieved the target sensitivity. Sureness was more consistent across the classifier output range for the SVM classifier than the LDA classifier. The SVM resulted in a net gain of 33 benign lesions and 307 cancers with higher sureness and maintained lesion-based performance. However, with the LDA there was a notable percentage of benign lesions (42%) with better sureness but lower lesion-based performance. CONCLUSIONS: When there is no evidence for difference in performance between classifiers using AUC or other performance summary measures, a lesion-based sureness metric may provide additional insight into AI pipeline design. These findings present and emphasize the utility of lesion-based repeatability via sureness in AI/CADx as a complementary enhancement to other evaluation measures.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Humanos , Feminino , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/patologia , Aprendizado de Máquina
2.
J Med Imaging (Bellingham) ; 10(4): 044501, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37426053

RESUMO

Purpose: In women with biopsy-proven breast cancer, histologically normal areas of the parenchyma have shown molecular similarity to the tumor, supporting a potential cancer field effect. The purpose of this work was to investigate relationships of human-engineered radiomic and deep learning features between regions across the breast in mammographic parenchymal patterns and specimen radiographs. Approach: This study included mammograms from 74 patients with at least 1 identified malignant tumor, of whom 32 also possessed intraoperative radiographs of mastectomy specimens. Mammograms were acquired with a Hologic system and specimen radiographs were acquired with a Fujifilm imaging system. All images were retrospectively collected under an Institutional Review Board-approved protocol. Regions of interest (ROI) of 128×128 pixels were selected from three regions: within the identified tumor, near to the tumor, and far from the tumor. Radiographic texture analysis was used to extract 45 radiomic features and transfer learning was used to extract 20 deep learning features in each region. Kendall's Tau-b and Pearson correlation tests were performed to assess relationships between features in each region. Results: Statistically significant correlations in select subgroups of features with tumor, near to the tumor, and far from the tumor ROI regions were identified in both mammograms and specimen radiographs. Intensity-based features were found to show significant correlations with ROI regions across both modalities. Conclusions: Results support our hypothesis of a potential cancer field effect, accessible radiographically, across tumor and non-tumor regions, thus indicating the potential for computerized analysis of mammographic parenchymal patterns to predict breast cancer risk.

3.
Heliyon ; 9(7): e17934, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483733

RESUMO

In response to the unprecedented global healthcare crisis of the COVID-19 pandemic, the scientific community has joined forces to tackle the challenges and prepare for future pandemics. Multiple modalities of data have been investigated to understand the nature of COVID-19. In this paper, MIDRC investigators present an overview of the state-of-the-art development of multimodal machine learning for COVID-19 and model assessment considerations for future studies. We begin with a discussion of the lessons learned from radiogenomic studies for cancer diagnosis. We then summarize the multi-modality COVID-19 data investigated in the literature including symptoms and other clinical data, laboratory tests, imaging, pathology, physiology, and other omics data. Publicly available multimodal COVID-19 data provided by MIDRC and other sources are summarized. After an overview of machine learning developments using multimodal data for COVID-19, we present our perspectives on the future development of multimodal machine learning models for COVID-19.

4.
Cancers (Basel) ; 15(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046802

RESUMO

The identification of women at risk for sporadic breast cancer remains a clinical challenge. We hypothesize that the temporal analysis of annual screening mammograms, using a long short-term memory (LSTM) network, could accurately identify women at risk of future breast cancer. Women with an imaging abnormality, which had been biopsy-confirmed to be cancer or benign, who also had antecedent imaging available were included in this case-control study. Sequences of antecedent mammograms were retrospectively collected under HIPAA-approved guidelines. Radiomic and deep-learning-based features were extracted on regions of interest placed posterior to the nipple in antecedent images. These features were input to LSTM recurrent networks to classify whether the future lesion would be malignant or benign. Classification performance was assessed using all available antecedent time-points and using a single antecedent time-point in the task of lesion classification. Classifiers incorporating multiple time-points with LSTM, based either on deep-learning-extracted features or on radiomic features, tended to perform statistically better than chance, whereas those using only a single time-point failed to show improved performance compared to chance, as judged by area under the receiver operating characteristic curves (AUC: 0.63 ± 0.05, 0.65 ± 0.05, 0.52 ± 0.06 and 0.54 ± 0.06, respectively). Lastly, similar classification performance was observed when using features extracted from the affected versus the contralateral breast in predicting future unilateral malignancy (AUC: 0.63 ± 0.05 vs. 0.59 ± 0.06 for deep-learning-extracted features; 0.65 ± 0.05 vs. 0.62 ± 0.06 for radiomic features). The results of this study suggest that the incorporation of temporal information into radiomic analyses may improve the overall classification performance through LSTM, as demonstrated by the improved discrimination of future lesions as malignant or benign. Further, our data suggest that a potential field effect, changes in the breast extending beyond the lesion itself, is present in both the affected and contralateral breasts in antecedent imaging, and, thus, the evaluation of either breast might inform on the future risk of breast cancer.

5.
Med Phys ; 50(6): 3801-3815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36799714

RESUMO

BACKGROUND: Accurate estimation of fetal radiation dose is crucial for risk-benefit analysis of radiological imaging, while the radiation dosimetry studies based on individual pregnant patient are highly desired. PURPOSE: To use Monte Carlo calculations for estimation of fetal radiation dose from abdominal and pelvic computed tomography (CT) examinations for a population of patients with a range of variations in patients' anatomy, abdominal circumference, gestational age (GA), fetal depth (FD), and fetal development. METHODS: Forty-four patient-specific pregnant female models were constructed based on CT imaging data of pregnant patients, with gestational ages ranging from 8 to 35 weeks. The simulation of abdominal and pelvic helical CT examinations was performed on three validated commercial scanner systems to calculate organ-level fetal radiation dose. RESULTS: The absorbed radiation dose to the fetus ranged between 0.97 and 2.24 mGy, with an average of 1.63 ± 0.33 mGy. The CTDIvol -normalized fetal dose ranged between 0.56 and 1.30, with an average of 0.94 ± 0.25. The normalized fetal organ dose showed significant correlations with gestational age, maternal abdominal circumference (MAC), and fetal depth. The use of ATCM technique increased the fetal radiation dose in some patients. CONCLUSION: A technique enabling the calculation of organ-level radiation dose to the fetus was developed from models of actual anatomy representing a range of gestational age, maternal size, and fetal position. The developed maternal and fetal models provide a basis for reliable and accurate radiation dose estimation to fetal organs.


Assuntos
Radiometria , Tomografia Computadorizada por Raios X , Humanos , Feminino , Gravidez , Doses de Radiação , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Feto/diagnóstico por imagem , Abdome/diagnóstico por imagem , Imagens de Fantasmas , Método de Monte Carlo
6.
Sci Rep ; 13(1): 1187, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681685

RESUMO

In addition to lung cancer, other thoracic abnormalities, such as emphysema, can be visualized within low-dose CT scans that were initially obtained in cancer screening programs, and thus, opportunistic evaluation of these diseases may be highly valuable. However, manual assessment for each scan is tedious and often subjective, thus we have developed an automatic, rapid computer-aided diagnosis system for emphysema using attention-based multiple instance deep learning and 865 LDCTs. In the task of determining if a CT scan presented with emphysema or not, our novel Transfer AMIL approach yielded an area under the ROC curve of 0.94 ± 0.04, which was a statistically significant improvement compared to other methods evaluated in our study following the Delong Test with correction for multiple comparisons. Further, from our novel attention weight curves, we found that the upper lung demonstrated a stronger influence in all scan classes, indicating that the model prioritized upper lobe information. Overall, our novel Transfer AMIL method yielded high performance and provided interpretable information by identifying slices that were most influential to the classification decision, thus demonstrating strong potential for clinical implementation.


Assuntos
Aprendizado Profundo , Enfisema , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Enfisema/diagnóstico por imagem
7.
Radiology ; 307(1): e220984, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36594836

RESUMO

Background Breast cancer tumors can be identified as different luminal molecular subtypes depending on either immunohistochemical (IHC) staining or St Gallen criteria that includes Ki-67. Purpose To characterize molecular subtypes and understand the impact of disagreement among IHC and St Gallen molecular subtype reference standards on artificial intelligence classification of luminal A and luminal B tumors with use of radiomic features extracted from dynamic contrast-enhanced (DCE) MRI scans. Materials and Methods In this retrospective study, 28 radiomic features previously extracted from DCE-MRI scans of breast tumors imaged between February 2015 and October 2017 were examined in the following groups: (a) tumors classified as luminal A by both reference standards ("agreement"), (b) tumors classified as luminal A by IHC and luminal B by St Gallen ("disagreement"), and (c) tumors classified as luminal B by both ("agreement"). Luminal A or luminal B tumor classification with use of radiomic features was conducted with use of three sets: (a) IHC molecular subtyping, (b) St Gallen molecular subtyping, and (c) agreement tumors. The Kruskal-Wallis test was followed by the Mann-Whitney U test to determine pair-wise differences of radiomic features among agreement and disagreement tumors. Fivefold cross-validation with use of stepwise feature selection and linear discriminant analysis classified tumors in each set, with performance measured with use of area under the receiver operating characteristic curve (AUC). Results A total of 877 breast cancer tumors from 872 women (mean age, 48 years [range, 19-75 years]) were analyzed. Six features (sphericity, irregularity, surface area to volume ratio, variance of radial gradient histogram, sum average, volume of most enhancing voxels) were different (P ≤ .001) among agreement and disagreement tumors. AUC (median, 0.74 [95% CI: 0.68, 0.80]) was higher than when using tumors subtyped by either reference standard (IHC, 0.66 [0.60, 0.71], P = .003; St Gallen, 0.62 [0.58, 0.67], P = .001). Conclusion Differences in reference standards can hinder artificial intelligence classification performance of luminal molecular subtypes with dynamic contrast-enhanced MRI. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bae in this issue.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Inteligência Artificial , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Padrões de Referência
8.
Nat Rev Clin Oncol ; 20(2): 69-82, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36443594

RESUMO

Computer-extracted tumour characteristics have been incorporated into medical imaging computer-aided diagnosis (CAD) algorithms for decades. With the advent of radiomics, an extension of CAD involving high-throughput computer-extracted quantitative characterization of healthy or pathological structures and processes as captured by medical imaging, interest in such computer-extracted measurements has increased substantially. However, despite the thousands of radiomic studies, the number of settings in which radiomics has been successfully translated into a clinically useful tool or has obtained FDA clearance is comparatively small. This relative dearth might be attributable to factors such as the varying imaging and radiomic feature extraction protocols used from study to study, the numerous potential pitfalls in the analysis of radiomic data, and the lack of studies showing that acting upon a radiomic-based tool leads to a favourable benefit-risk balance for the patient. Several guidelines on specific aspects of radiomic data acquisition and analysis are already available, although a similar roadmap for the overall process of translating radiomics into tools that can be used in clinical care is needed. Herein, we provide 16 criteria for the effective execution of this process in the hopes that they will guide the development of more clinically useful radiomic tests in the future.

9.
Med Phys ; 50(4): 2577-2589, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35962972

RESUMO

PURPOSE: Accurate estimations of fetal absorbed dose and radiation risks are crucial for radiation protection and important for radiological imaging research owing to the high radiosensitivity of the fetus. Computational anthropomorphic models have been widely used in patient-specific radiation dosimetry calculations. In this work, we aim to build the first digital fetal library for more reliable and accurate radiation dosimetry studies. ACQUISITION AND VALIDATION METHODS: Computed tomography (CT) images of abdominal and pelvic regions of 46 pregnant females were segmented by experienced medical physicists. The segmented tissues/organs include the body contour, skeleton, uterus, liver, kidney, intestine, stomach, lung, bladder, gall bladder, spleen, and pancreas for maternal body, and placenta, amniotic fluid, fetal body, fetal brain, and fetal skeleton. Nonuniform rational B-spline (NURBS) surfaces of each identified region was constructed manually using 3D modeling software. The Hounsfield unit values of each identified organs were gathered from CT images of pregnant patients and converted to tissue density. Organ volumes were further adjusted according to reference measurements for the developing fetus recommended by the World Health Organization (WHO) and International Commission on Radiological Protection. A series of anatomical parameters, including femur length, humerus length, biparietal diameter, abdominal circumference (FAC), and head circumference, were measured and compared with WHO recommendations. DATA FORMAT AND USAGE NOTES: The first fetal patient-specific model library was developed with the anatomical characteristics of each model derived from the corresponding patient whose gestational age varies between 8 and 35 weeks. Voxelized models are represented in the form of MCNP matrix input files representing the three-dimensional model of the fetus. The size distributions of each model are also provided in text files. All data are stored on Zenodo and are publicly accessible on the following link: https://zenodo.org/record/6471884. POTENTIAL APPLICATIONS: The constructed fetal models and maternal anatomical characteristics are consistent with the corresponding patients. The resulting computational fetus could be used in radiation dosimetry studies to improve the reliability of fetal dosimetry and radiation risks assessment. The advantages of NURBS surfaces in terms of adapting fetal postures and positions enable us to adequately assess their impact on radiation dosimetry calculations.


Assuntos
Feto , Radiometria , Gravidez , Feminino , Humanos , Lactente , Reprodutibilidade dos Testes , Imagens de Fantasmas , Radiometria/métodos , Feto/diagnóstico por imagem , Software , Doses de Radiação
10.
J Appl Clin Med Phys ; 23(12): e13777, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36125203

RESUMO

Entry into the field of clinical medical physics is most commonly accomplished through the completion of a Commission on Accreditation of Medical Physics Educational Programs (CAMPEP)-accredited graduate and residency program. To allow a mechanism to bring valuable expertise from other disciplines into clinical practice in medical physics, an "alternative pathway" approach was also established. To ensure those trainees who have completed a doctoral degree in physics or a related discipline have the appropriate background and didactic training in medical physics, certificate programs and a CAMPEP-accreditation process for these programs were initiated. However, medical physics-specific didactic, research, and clinical exposure of those entering medical physics residencies from these certificate programs is often comparatively modest when evaluated against individuals holding Master's and/or Doctoral degrees in CAMPEP-accredited graduate programs. In 2016, the AAPM approved the formation of Task Group (TG) 298, "Alternative Pathway Candidate Education and Training." The TG was charged with reviewing previous published recommendations for alternative pathway candidates and developing recommendations on the appropriate education and training of these candidates. This manuscript is a summary of the AAPM TG 298 report.


Assuntos
Educação Médica , Internato e Residência , Radioterapia (Especialidade) , Humanos , Física Médica/educação , Competência Clínica , Educação de Pós-Graduação em Medicina
11.
J Med Imaging (Bellingham) ; 9(3): 034501, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35692282

RESUMO

Background: Ultrasound (US)-guided fine needle aspiration (FNA) cytology is the gold standard for the evaluation of thyroid nodules. However, up to 30% of FNA results are indeterminate, requiring further testing. In this study, we present a machine-learning analysis of indeterminate thyroid nodules on ultrasound with the aim to improve cancer diagnosis. Methods: Ultrasound images were collected from two institutions and labeled according to their FNA (F) and surgical pathology (S) diagnoses [malignant (M), benign (B), and indeterminate (I)]. Subgroup breakdown (FS) included: 90 BB, 83 IB, 70 MM, and 59 IM thyroid nodules. Margins of thyroid nodules were manually annotated, and computerized radiomic texture analysis was conducted within tumor contours. Initial investigation was conducted using five-fold cross-validation paradigm with a two-class Bayesian artificial neural networks classifier, including stepwise feature selection. Testing was conducted on an independent set and compared with a commercial molecular testing platform. Performance was evaluated using receiver operating characteristic analysis in the task of distinguishing between malignant and benign nodules. Results: About 1052 ultrasound images from 302 thyroid nodules were used for radiomic feature extraction and analysis. On the training/validation set comprising 263 nodules, five-fold cross-validation yielded area under curves (AUCs) of 0.75 [Standard Error (SE) = 0.04; P < 0.001 ] and 0.67 (SE = 0.05; P = 0.0012 ) for the classification tasks of MM versus BB, and IM versus IB, respectively. On an independent test set of 19 IM/IB cases, the algorithm for distinguishing indeterminate nodules yielded an AUC value of 0.88 (SE = 0.09; P < 0.001 ), which was higher than the AUC of a commercially available molecular testing platform (AUC = 0.81, SE = 0.11; P < 0.005 ). Conclusion: Machine learning of computer-extracted texture features on gray-scale ultrasound images showed promising results classifying indeterminate thyroid nodules according to their surgical pathology.

12.
J Med Imaging (Bellingham) ; 9(3): 035502, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35656541

RESUMO

Purpose: The aim of this study is to (1) demonstrate a graphical method and interpretation framework to extend performance evaluation beyond receiver operating characteristic curve analysis and (2) assess the impact of disease prevalence and variability in training and testing sets, particularly when a specific operating point is used. Approach: The proposed performance metric curves (PMCs) simultaneously assess sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), and the 95% confidence intervals thereof, as a function of the threshold for the decision variable. We investigated the utility of PMCs using six example operating points associated with commonly used methods to select operating points (including the Youden index and maximum mutual information). As an example, we applied PMCs to the task of distinguishing between malignant and benign breast lesions using human-engineered radiomic features extracted from dynamic contrast-enhanced magnetic resonance images. The dataset had 1885 lesions, with the images acquired in 2015 and 2016 serving as the training set (1450 lesions) and those acquired in 2017 as the test set (435 lesions). Our study used this dataset in two ways: (1) the clinical dataset itself and (2) simulated datasets with features based on the clinical set but with five different disease prevalences. The median and 95% CI of the number of type I (false positive) and type II (false negative) errors were determined for each operating point of interest. Results: PMCs from both the clinical and simulated datasets demonstrated that PMCs could support interpretation of the impact of decision threshold choice on type I and type II errors of classification, particularly relevant to prevalence. Conclusion: PMCs allow simultaneous evaluation of the four performance metrics of sensitivity, specificity, PPV, and NPV as a function of the decision threshold. This may create a better understanding of two-class classifier performance in machine learning.

13.
J Med Imaging (Bellingham) ; 9(3): 034502, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35685120

RESUMO

Purpose: We demonstrate continuous learning and assess its impact on the performance of artificial intelligence of breast dynamic contrast-enhanced magnetic resonance imaging in the task of distinguishing malignant from benign lesions on an independent clinical test dataset. Approach: The study included 1979 patients with 1990 lesions who underwent breast MR imaging during 2015, 2016, and 2017, retrospectively collected under an IRB-approved protocol; there were 1494 malignant and 496 benign lesions based on histopathology. AI was conducted in the task of distinguishing malignant and benign lesions, and independent testing was performed to assess the effect of increasing the numbers of training cases. Five training sets mimicking clinical implementation of continuous AI learning included cases from (1) first quarter of 2015, (2) first half of 2015, (3) all 2015, (4) all 2015 and first half of 2016, and (5) all 2015 and 2016. All classifiers were evaluated on the 2017 independent test set. The area under the ROC curve (AUC) served as the performance metric and was calculated over all lesions in the test set, as well as only mass lesions and only non-mass enhancements. The Mann-Kendall test was used to determine if continuous learning resulted in a positive trend in classification performance. P < 0.05 was considered to be statistically significant. Results: Over the continuous training period, the selected feature subsets tended to become more similar and stable. Performance of the five training conditions on the independent test dataset yielded AUCs of 0.86 (95% CI: [0.83,0.90]), 0.87 (95% CI: [0.83,0.90]), 0.88 (95% CI: [0.84,0.91]), 0.89 (95% CI: [0.85,0.92]), and 0.89 (95% CI: [0.86,0.92]). The Mann-Kendall test indicated a statistically significant positive trend ( P = 0.0167 ) in classification performance with continuous learning. Conclusions: Improved diagnostic performance over time was observed when continuous learning of AI was implemented on an independent clinical test dataset.

14.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608910

RESUMO

BACKGROUNDIn human lupus nephritis (LN), tubulointerstitial inflammation (TII) on biopsy predicts progression to end-stage renal disease (ESRD). However, only about half of patients with moderate-to-severe TII develop ESRD. We hypothesized that this heterogeneity in outcome reflects different underlying inflammatory states. Therefore, we interrogated renal biopsies from LN longitudinal and cross-sectional cohorts.METHODSData were acquired using conventional and highly multiplexed confocal microscopy. To accurately segment cells across whole biopsies, and to understand their spatial relationships, we developed computational pipelines by training and implementing several deep-learning models and other computer vision techniques.RESULTSHigh B cell densities were associated with protection from ESRD. In contrast, high densities of CD8+, γδ, and other CD4-CD8- T cells were associated with both acute renal failure and progression to ESRD. B cells were often organized into large periglomerular neighborhoods with Tfh cells, while CD4- T cells formed small neighborhoods in the tubulointerstitium, with frequency that predicted progression to ESRD.CONCLUSIONThese data reveal that specific in situ inflammatory states are associated with refractory and progressive renal disease.FUNDINGThis study was funded by the NIH Autoimmunity Centers of Excellence (AI082724), Department of Defense (LRI180083), Alliance for Lupus Research, and NIH awards (S10-OD025081, S10-RR021039, and P30-CA14599).


Assuntos
Falência Renal Crônica , Nefrite Lúpica , Estudos Transversais , Humanos , Inflamação/patologia , Rim/patologia , Falência Renal Crônica/etiologia , Falência Renal Crônica/patologia , Estados Unidos
15.
J Breast Imaging ; 4(5): 451-459, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38416954

RESUMO

Breast cancer screening has evolved substantially over the past few decades because of advancements in new image acquisition systems and novel artificial intelligence (AI) algorithms. This review provides a brief overview of the history, current state, and future of AI in breast cancer screening and diagnosis along with challenges involved in the development of AI systems. Although AI has been developing for interpretation tasks associated with breast cancer screening for decades, its potential to combat the subjective nature and improve the efficiency of human image interpretation is always expanding. The rapid advancement of computational power and deep learning has increased greatly in AI research, with promising performance in detection and classification tasks across imaging modalities. Most AI systems, based on human-engineered or deep learning methods, serve as concurrent or secondary readers, that is, as aids to radiologists for a specific, well-defined task. In the future, AI may be able to perform multiple integrated tasks, making decisions at the level of or surpassing the ability of humans. Artificial intelligence may also serve as a partial primary reader to streamline ancillary tasks, triaging cases or ruling out obvious normal cases. However, before AI is used as an independent, autonomous reader, various challenges need to be addressed, including explainability and interpretability, in addition to repeatability and generalizability, to ensure that AI will provide a significant clinical benefit to breast cancer screening across all populations.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer , Aprendizado de Máquina , Algoritmos
16.
Cancers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638294

RESUMO

Radiomic features extracted from medical images may demonstrate a batch effect when cases come from different sources. We investigated classification performance using training and independent test sets drawn from two sources using both pre-harmonization and post-harmonization features. In this retrospective study, a database of thirty-two radiomic features, extracted from DCE-MR images of breast lesions after fuzzy c-means segmentation, was collected. There were 944 unique lesions in Database A (208 benign lesions, 736 cancers) and 1986 unique lesions in Database B (481 benign lesions, 1505 cancers). The lesions from each database were divided by year of image acquisition into training and independent test sets, separately by database and in combination. ComBat batch harmonization was conducted on the combined training set to minimize the batch effect on eligible features by database. The empirical Bayes estimates from the feature harmonization were applied to the eligible features of the combined independent test set. The training sets (A, B, and combined) were then used in training linear discriminant analysis classifiers after stepwise feature selection. The classifiers were then run on the A, B, and combined independent test sets. Classification performance was compared using pre-harmonization features to post-harmonization features, including their corresponding feature selection, evaluated using the area under the receiver operating characteristic curve (AUC) as the figure of merit. Four out of five training and independent test scenarios demonstrated statistically equivalent classification performance when compared pre- and post-harmonization. These results demonstrate that translation of machine learning techniques with batch data harmonization can potentially yield generalizable models that maintain classification performance.

17.
Radiol Clin North Am ; 59(6): 1027-1043, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689871

RESUMO

This article gives a brief overview of the development of artificial intelligence in clinical breast imaging. For multiple decades, artificial intelligence (AI) methods have been developed and translated for breast imaging tasks such as detection, diagnosis, and assessing response to therapy. As imaging modalities arise to support breast cancer screening programs and diagnostic examinations, including full-field digital mammography, breast tomosynthesis, ultrasound, and MRI, AI techniques parallel the efforts with more complex algorithms, faster computers, and larger data sets. AI methods include human-engineered radiomics algorithms and deep learning methods. Examples of these AI-supported clinical tasks are given along with commentary on the future.


Assuntos
Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Mama/diagnóstico por imagem , Feminino , Humanos
18.
Radiol Artif Intell ; 3(3): e200159, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34235439

RESUMO

PURPOSE: To develop a deep transfer learning method that incorporates four-dimensional (4D) information in dynamic contrast-enhanced (DCE) MRI to classify benign and malignant breast lesions. MATERIALS AND METHODS: The retrospective dataset is composed of 1990 distinct lesions (1494 malignant and 496 benign) from 1979 women (mean age, 47 years ± 10). Lesions were split into a training and validation set of 1455 lesions (acquired in 2015-2016) and an independent test set of 535 lesions (acquired in 2017). Features were extracted from a convolutional neural network (CNN), and lesions were classified as benign or malignant using support vector machines. Volumetric information was collapsed into two dimensions by taking the maximum intensity projection (MIP) at the image level or feature level within the CNN architecture. Performances were evaluated using the area under the receiver operating characteristic curve (AUC) as the figure of merit and were compared using the DeLong test. RESULTS: The image MIP and feature MIP methods yielded AUCs of 0.91 (95% CI: 0.87, 0.94) and 0.93 (95% CI: 0.91, 0.96), respectively, for the independent test set. The feature MIP method achieved higher performance than the image MIP method (∆AUC 95% CI: 0.003, 0.051; P = .03). CONCLUSION: Incorporating 4D information in DCE MRI by MIP of features in deep transfer learning demonstrated superior classification performance compared with using MIP images as input in the task of distinguishing between benign and malignant breast lesions.Keywords: Breast, Computer Aided Diagnosis (CAD), Convolutional Neural Network (CNN), MR-Dynamic Contrast Enhanced, Supervised learning, Support vector machines (SVM), Transfer learning, Volume Analysis © RSNA, 2021.

19.
Am J Pathol ; 191(10): 1693-1701, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129842

RESUMO

With applications in object detection, image feature extraction, image classification, and image segmentation, artificial intelligence is facilitating high-throughput analysis of image data in a variety of biomedical imaging disciplines, ranging from radiology and pathology to cancer biology and immunology. Specifically, a growth in research on deep learning has led to the widespread application of computer-visualization techniques for analyzing and mining data from biomedical images. The availability of open-source software packages and the development of novel, trainable deep neural network architectures has led to increased accuracy in cell detection and segmentation algorithms. By automating cell segmentation, it is now possible to mine quantifiable cellular and spatio-cellular features from microscopy images, providing insight into the organization of cells in various pathologies. This mini-review provides an overview of the current state of the art in deep learning- and artificial intelligence-based methods of segmentation and data mining of cells in microscopy images of tissue.


Assuntos
Inteligência Artificial , Células/citologia , Processamento de Imagem Assistida por Computador , Microscopia , Especificidade de Órgãos , Animais , Aprendizado Profundo , Humanos
20.
Magn Reson Imaging ; 82: 111-121, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34174331

RESUMO

Radiomic features extracted from breast lesion images have shown potential in diagnosis and prognosis of breast cancer. As medical centers transition from 1.5 T to 3.0 T magnetic resonance (MR) imaging, it is beneficial to identify potentially robust radiomic features across field strengths because images acquired at different field strengths could be used in machine learning models. Dynamic contrast-enhanced MR images of benign breast lesions and hormone receptor positive/HER2-negative (HR+/HER2-) breast cancers were acquired retrospectively, yielding 612 unique cases: 150 and 99 benign lesions imaged at 1.5 T and 3.0 T, and 223 and 140 HR+/HER2- cancerous lesions imaged at 1.5 T and 3.0 T, respectively. In addition, an independent set of seven lesions imaged at both field strengths, three benign lesions and four HR+/HER2- cancers, was analyzed separately. Lesions were automatically segmented using a 4D fuzzy c-means method; thirty-eight radiomic features were extracted. Feature value distributions were compared by cancer status and imaging field strength using the Kolmogorov-Smirnov test. Features that did not demonstrate a statistically significant difference were considered to be potentially robust. The area under the receiver operating characteristic curve (AUC), for the task of classifying lesions as benign or HR+/HER2- cancer, was determined for each feature at each field strength. Three features were found to be both potentially robust across field strength and of high classification performance, i.e., AUCs statistically greater than 0.5 in the classification task: one shape feature (irregularity), one texture feature (sum average) and one enhancement variance kinetics features (enhancement variance increasing rate). In the demonstration set of lesions imaged at both field strengths, two of the three potentially robust features showed qualitative agreement across field strength. These findings may contribute to the development of computer-aided diagnosis models that are robust across field strength for this classification task.


Assuntos
Neoplasias da Mama , Imãs , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Feminino , Hormônios , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA